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A NEW DISCORDANCY TEST IN 

CIRCULAR DATA  

USING SPACINGS THEORY    

                 



• Circular statistics is a branch of statistics deals with data points distributed around a unit 

circle. 

   Examples: Biology (Animals navigation), Meteorology (wind and wave directions). 

• Due to the bounded range property of circular variables, special methods are required to 

analyze circular data. 

Example 1  

Consider  the difference between two  

observations ; A=315 and B=45. 

 

Fig1. Circular plot 

The difference should 

be : 

 |  – |  – | 315 – 45 | | | 

   = 90  

 

The difference: 

 315 – 45 = 270  

A B 

A REVIEW: CIRCULAR STATISTICS 



A REVIEW: OUTLIER 

•  Describe as a value with large circular distances from the value to the two neighbouring 

observations on a unit circle. 

      An example, consider the following data set     1 , 5 , 11 , 22 , 35 , 90 , 350. 

                 Linear Case:  350 is an outlier. 

                 Circular Case: 350 is consistent with the other observations. 

0 50 100 150 200 250 300 350

Fig 2. Linear and circular representation of data set 

(a) 
(b) 



1) To review  circular samples and existed outlier detection method. 

2) To review spacing’s theory. 

3) To develop a new test of discordance based on gaps between 

observations 

4) To investigate the performance of new test. 

5) To illustrate a practical example based on an eye data set. 

Conclusion 

OBJECTIVES 



The Circular Samples 

 Various distributions are available for circular data, for example, 

uniform distribution, wrapped Cauchy distribution, wrapped normal 

distribution, cardioid distribution, and others.  

 Jammalamadaka and SenGupta (2001) reviewed the wrapped  stable 

distribution with the wrapped Cauchy and the wrapped normal 

distributions as the special cases. 

 In this study, we use the von Mises distribution (also known as the 

circular normal distribution)  which is the most commonly used which 

is a continuous probability distribution on a circle. 



The Discordancy Tests 

back 

•There are four tests of discordancy in circular samples (M, C, D and A statistics). 
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Collett (1980) 
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Collett (1980) 
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Abuzaid (2010) 
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The Spacings Theory 

1. Suppose n ,...,, 21  are )..( dii  circular observations located on the 

circumference of a unit circle while )((2)(1) ,...,, n  are the 

corresponding ordered circular observations.  

2. Following notation by Rao (1976), we define the one-step spacing for 

the i-th ordered observation as 

)(1)(1 iiiG    ,  ni ...,,2,1 ,                                         (5) 

and )1()(1 2   nnG . 

3. Note that  niG i ...,,2,1,1   gives a sequence of distances between 

successive observations on the circumference.   

 



The Spacing’s Theory 

4. The statistic (5) can be generalized to detect a patch of outliers in 

circular data.  

5. For that, we define aiG  as the a-step spacing for the ith ordered 

observation, a=1,2,3,… and ni ...,,2,1  such that 

iaiaiG      for ani  ,...,2,1             (6) 

and   naiiaiG  2  for     nanani ,...,2,1  . 

6. We will use the statistics (6) in the development of a new discordancy 

test, denoted by Ga, for detecting a single, multiple as well as a patch 

of outliers. 

back 



A new statistics of discordance: The Ga Statistic 

Suppose 1 2, ,..., n    are ( . . )i i d  circular observations from a VM distribution.   

The steps to obtain the Ga statistic is described below: 

Step 1 Order the observations as (1) (2) ( ), ,..., n   . 

Step 2 For a choice of a-step spacing, calculate aiG , 1,2,...,i n  as 

given in equation (6). 

Step 3 Define  ,min ,i ai a i aG G G   for  1,2,..., ,i n  which is the smaller 

of the a-step spacing on either side of i . 

Step 4 Define  
1,2,...,
maxa i

i n
G G


 . 

If the value of aG  exceeds a pre-determined cut-off point, say gC , then the 

ith observation corresponding to  
1,2,...,
max ai

i n
G


 is identified as an outlier. 
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The Spacing’s Theory 

Let 323  , if we use one step spacing 1a ; 
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The Spacing’s Theory 
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Let 323  , if we use one step spacing 2a ; 

 aiaaii GGG  ,,min  

iaiaiG    , 
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Performance Of The G1 Statistic  

 

1. David (1970, p.185) and Barnett and Lewis (1984, p.64-68) stated that a good test should 

have 

(i) a high power function,  

(ii) a high probability of identifying a contaminating value as an outlier when it is 

indeed an extreme value, where an extreme value is defined as a point with a 

maximum circular distance from the mean direction of the data 

(iii) a low probability of wrongly identifying a good observation as discordance, which 

is an observation that does not belong to the pre-assumed VM distribution. 

 

 

 



Performance Of The G1 Statistic  

 1. Let  

i. )(1=1 P  be the power function where   is the type-II error;  

ii. 3P  the probability that the contaminant point is an extreme point and is identified 

as discordance; and  

iii. 5P  the probability that the contaminant point is identified as discordance given that 

it is an extreme point.  

 

2. A good test is expected to have (i) high 1P , (ii) high 5P  and (iii) low 31 PP  . 

 

 

 



Performance Of The G1 Statistic  

 

1. Samples are generated in such a way that  1n  of the observations 

come from   ,VM   and one observation from   ,VM , 

where   is the degree of contamination and 10   .   

 

2. We use different sample sizes n  in the range [20, 100] and different 

values of   in the range [5.29, 7.5].     

 

3. The measures of performance of the G1, C, D and A statistics are 

then calculated. 

 

4. The process is carried out 4000 times.   



Performance Of The G1 Statistic  

 

       

(a)   (b) 

Figure 2 : Performance of C, D, G1 and A statistics when n=20, 29.5   

 

 

 

 



Advantage Of The Ga Statistic  

 
 All four statistics can also be used to detect multiple outliers that are 

well separated from each other.   

 

 The proposed G1 statistic holds an advantage above the others as the 

only statistic that can be generalized to detect a patch of outliers in a 

circular sample. 

 



Advantage Of The Ga Statistic  

 

back 

 All four statistics can also be used to detect multiple outliers that are 

well separated from each other.   

 

 The proposed G1 statistic holds an advantage above the others as the 

only statistic that can be generalized to detect a patch of outliers in a 

circular sample. 

 



Performance Of The Ga Statistic  
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1. To study the performance of the aG  statistic for a = 1, 2, 3, 4, we 

generate samples based on different sizes  n  = 5, 20 and 100 and 

concentration parameter  values   = 5.29, 7.42 and 10.27.   

2. The samples are generated in such a way that n a  of the 

observations come from ( , )VM    and the remainder from 

( , 10.27)VM     , 0 1  .  

3. We set 10.27   so that the outlying observations are clustered in 

a single patch.  

 



Performance Of The Ga Statistic  

 

back 

4. The aG  statistic in each random sample is then calculated.   

5. If aG  is greater than the corresponding cut-off point,  then we 

have correctly detected the patch of a outliers.   

6. We repeat the simulation 4000 times and obtain the proportion of 

correct detection of the patch of outliers introduced into the 

samples. 

 



Performance Of The Ga Statistic  
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Table 5. Proportion of correct detection of patches of outliers 

  Single outlier A patch of 2 outliers 

 к 5.29 

 

7.42 

 

10.27 

 

5.29 

 

7.42 

 

10.27 

 n λ 

20 0 0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.02 0.07 0.19 0.00 0.01 0.06 

0.5 0.46 0.74 0.89 0.19 0.62 0.86 

0.7 0.91 0.98 1.00 0.85 0.98 1.00 

1 1.00 1.00 1.00 1.00 1.00 1.00 

50 0 0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.01 0.04 0.13 0.00 0.00 0.02 

0.5 0.28 0.65 0.85 0.11 0.46 0.78 

0.7 0.83 0.98 1.00 0.77 0.97 1.00 

1 0.99 1.00 1.00 0.99 1.00 1.00 

100 0 0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.00 0.02 0.08 0.00 0.00 0.01 

0.5 0.16 0.57 0.80 0.04 0.33 0.71 

0.7 0.74 0.95 0.99 0.62 0.94 0.99 

1 0.98 1.00 1.00 0.99 1.00 1.00 

 



Performance Of The Ga Statistic  
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  A patch of 3 outliers  A patch of 4 outliers  
 к 5.29 

 

7.42 

 

10.27 

 

5.29 

 

7.42 

 

10.27 

 n λ 

20 0 0.00  0.00  0.00  0.00  0.00  0.00  
0.25 0.00  0.00  0.01  0.00  0.00  0.00  
0.5 0.13  0.53  0.80  0.07  0.49  0.78  
0.7 0.83  0.98  1.00  0.81  0.99  1.00  
1 0.99  1.00  1.00  0.99  1.00  1.00  

50 0 0.00  0.00  0.00  0.00  0.00  0.00  
0.25 0.00  0.00  0.00  0.00  0.00  0.00  
0.5 0.03  0.39  0.74  0.01  0.24  0.71  
0.7 0.68  0.97  1.00  0.65  0.96  1.00  
1 0.99  1.00  1.00  1.00  1.00  1.00  

100 0 0.00  0.00  0.00  0.00  0.00  0.00  
0.25 0.00  0.00  0.00  0.00  0.00  0.00  
0.5 0.01  0.20  0.64  0.00  0.17  0.57  
0.7 0.57  0.94  0.99  0.42  0.94  0.99  
1 0.99  1.00  1.00  0.99  1.00  1.00  

 



 We consider an eye data set obtained from a glaucoma clinic at the 

University of Malaya Medical Center, Malaysia.   

 Images of the posterior segment of the eyes of 23 patients were taken 

using the Anterior Segment Optical Coherence Tomography (AS-

OCT).  

 The variable of our interest is the angle of posterior corneal curvature 

defined as follow.  

The Practical Example 



The Practical Example 

 
Figure 1: Posterior corneal curvature measurement 

 

1. In the diagram, O is the intersection of the geometrical axis of the eye (horizontal 

line) with the line made between the nasal and temporal scleral spurs (vertical 

line).  

2. From O, we draw radii to the posterior surface of the cornea in the range 

[3.49,3.51] mm.  

3. Then, the angle of the area generated by radii is called the angle of posterior 

corneal curvature as shown in Figure 1. 



The Practical Example 
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1. The circular plot of the Eye data is given in Figure 2.  

2. It can be seen that a patch of two observations lies further away from the rest.  

3. Furthermore, the P-P plot of angle of posterior corneal curvature given in Figure 3 

indicates that the data follow a VM distribution. 

4.  We can therefore apply the proposed discordancy test on the data. 

  

 

 

 

 

 

 

 

 

 

Figure 2: Circular plot of angle of                             Figure 3: P-P plot of angle of 

posterior corneal curvature                                    posterior corneal curvature 
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The Ga-Statistic 

1. Summary statistics for the given data set are calculated; the 

estimated mean direction is ˆ =1.61  radians or 92  and the 

estimated concentration parameter is ˆ 6.84  .  

 

Table 4. Result based on 2G  statistic 

 

Observation 2G  statistic Cut-off Point 

10 0.68 
0.67 

17 0.78 

 

2. Note that we also identify both observations as a patch of 2 outliers 

using 3G  and 4G  but not 1G .  

3. Further, the deletion of these points from the original data changes 

the parameter esimates to ˆ =1.69  or 97 and ˆ 15.5  , indicating 

that the estimated ̂  is significantly affected by the existence of 

these outliers in the data as expected. 

 



1) Have reviewed  circular samples and existed outlier detection method. 

2) Have reviewed spacing’s theory. 

3) Have developed a new test of discordance based on gaps between observations 

4) Have investigated the performance of new test. 

5) Have illustrated a practical example based on an eye data set. 

 

CONCLUSION 



Thank you 


